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Abstract-Bounds for heat transport in several classical problems of conduction and forced convection 
heat transfer are developed. The conduction bounds are based on a variational formulation, in which 
systematic enrichment and restriction of the space of candidate minimizing functions leads to lower and 
upper bounds, respectively. It is shown that the addition of insulator ‘cuts’ results in a broadening of the 
space and therefore underestimation of transport, whereas the addition of superconductor cuts leads to 
contraction of the space and overestimation. Our results constitute formal proof of several theorems 
proposed by Elrod (Trans. ASME J. Heat Transfer 65-70 (February 1974)). An upper bound for forced 
convection heat transfer in turbulent plane Couette flow based on the method of horizontal averages and 
power integrals is also presented. In particular, it is shown that for fixed (given) momentum transport, the 
heat transfer rate from the wall can be bounded from above as a function of the Reynolds and Prandtl 
numbers. This relationship between shear stress and heat flux serves as theoretical support for Reynolds’ 

morn~t~~eat transport analogy for turbulent non-separated flow. 

INTRODUCTION 

A LARGE number of physical phenomena can be 
described by va~ational stalem~~ts, in which the 
desired solution is obtained as the extremum of an 
appropriately defined functional [1, 21. These vari- 
ational formulations prove useful in the construction 
of approximate or numerical solutions, as well as in 
the subsequent theoretical analysis of the accuracy 
and convergence of these approximations [3]. In 
essence, the variational representation reduces the 
differential statement to an integral form, which is 
then much more amenable to estimation than the 
original ‘pointwise’ description. 

It has long been known that the problem of steady 
heat conduction has a variational statement, in which 
the solution of Poisson’s equation is replaced by mini- 
mization of the Dirichlet functional [4]. The vari- 
ational formulation is the basis of the finite element 
method as applied to this class of problems [3]. How- 
ever, outside of finite element discretizatious, vari- 
ational methods are used very little in conduction 
heat transfer practice, perhaps due to the non-obvious 
physical significance of the Dirichlet integral. In this 
paper, we propose to show (or, more precisely, re- 
invent) how simple physical considerations within the 
framework of a variational fo~ulation can lead to 
practical yet rigorous estimation and bound tech- 
niques. Our results constitute a proof of several upper 
and lower bound theorems proposed by Elrod [S]. 

Unlike the problem of heat conduction, prediction 
of forced convection heat transfer does not cor- 
respond to minimization of a functional. As a result, 
to make progress using integral methods for con- 
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vective problems requires the construction of ‘arti- 
ficial’ functionals the extrema of which can be used to 
bound (but not predict) the desired quantities. 
Although such techniques have been employed pre- 
viously in natural convection studies [2], they have 
not, to our knowledge, been used for forced convec- 
tion. We present here an analysis of forced convection 
heat transfer based on these ideas. The methods and 
resulting bounds are much less trivial, and markedly 
less genera1 than their conduction counterparts. How- 
ever. they nevertheless offer insight into the basic ques- 
tion of the relationship between momentum and heat 
transport. 

In Part 1 of this paper we discuss and prove some 
simple va~ational conduction bounds. Emphasis is 
both on the formal proofs of lower and upper bounds, 
and on the physical significance of the estimation tech- 
niques. Having introduced the concept of bounds, we 
turn in Part 2 to estimation of an upper bound for 
forced convection heat transfer in turbulent plane 
Couette flow. The relevance of these convective trans- 
port estimates to classical momentum/heat transport 
relations such as the Reynolds analogy [6] is discussed. 

PART 1. CONDUCTION 

Problem statement 
We consider here the simple but common case of 

steady (two-dimensional) conduction heat transfer 
between two isothermal surfaces, as shown in Fig. 1. 
The governing equations and associated boundary 
conditions in non-dimensional form are 

vze = 0 in D (la) 

W-n=0 on aD, (lb) 

8HT 31:9-A 1747 
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NOMENCLATURE 

area of region B defined in the Appendix 
cross-section of wedge in Fig. 4 
two-dimensional region defined in the 
Appendix 
‘length’ for geometry of Fig. 5 
two-dimensional region defined in 
Part 1 
boundary of region D 
distance between two parallel plates in 
Part 2 
dimensional and non-dimensional mean 
momentum flux 
heat transfer coefficient 
non-dimensional heat transfer 
coefficient 
Dirichlet integral of function v, defined 
in equation (4b) 
modified Dirichlet integral defined in 
equation (31 b) 
unit vectors in the x-. y-, r-directions 
thermal conductivity 
unit vectors orthogonal and tangential 
to boundaries 

general, mean, and fluctuation 
pressure fields 
Peclet number 
Prandtl number 
dimensional and non-dimensional heat 
transfer rate 
Reynolds number 
dimensional temperature 
temperature difference between 
isothermal boundaries 
mean velocity field 

U, v, u’ fluctuation velocity fields in the x-, y-, z- 
directions 

V,V general and fluctuation vector velocity 
fields 

.‘i-,y, z Cartesian coordinates. 

Greek symbols 

: 
thermal diffusivity of the fluid 
small parameter defined in the Appendix 

0, B,, 13 general. mean, and fluctuation 
temperature fields 

0 non-dimensional temperature field in 
Part 1 

p viscosity 
1’ kinematic viscosity 

P constant density of fluid. 

Other symbols 
space of functions defined in 
equation (6) 
space of functions defined in 
equation (13b) 
space of functions defined in 
equation (17b) 
any space of functions 
space of functions defined in 
equation (5) 
integration over finite domain D (or 
D’, D”) in Part 1 
average over entire infinite domain in 
Part 2 
average over infinite horizontal plane for 
any function v(.u,y, z) in Part 2 
vector gradient operator. 

1 

0 = l{O) ontYD,(aD,) UC) 

where 0 = (T- T,)/( TI - T,) is the non-dimensional 
temperature, D the physical domain, aD2 the adiabatic 
boundary (outward normal n), and aD,, dD, the iso- 
thermal surfaces. 

Of interest is determining the heat transfer rate 
through the body, which is given by 

q = Ql~~T = 
1 

VB.nds = - VB*nds (2) 
aLf, s PD, 

where Q is the dimensional heat transfer rate per unit 
depth into the paper, AT = ‘I’, - T0 the temperature 
difference between the plates, and k the (assumed 
constant) thermal conductivity of the material. Equal- 
ity of the two integrals in equation (2) follows by 
integration of equation (la) over the domain, and 
application of Gauss’ theorem and boundary con- 
ditions (lb). 

\ IJ 

FIG. 1. General conduction problem to be considered. cone- 
sponding to heat transfer between two isothermal surfaces. 

To put equation (2) in more convenient form for 
purposes of estimation, we multiply equation (1 a) by 
the solution, 8, and perform an integration by parts 
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(ev’e) = s eVB.nds-((VQ)2) = 0 (3) 
aD,Ur?D” 

(where (*) represents integration over the domain D), 
from which it follows by definition of q in equation 

(2) that 

4 = Z(e) 

where Z(v) is the Dirichlet integral given by 

(4a) 

Z(u) = ((Vu)‘). (4b) 

In addition to the differential statement given in 
equation (I), a variational formulation of the heat 

conduction problem can also be posed. To arrive at 
the variational statement, we first define the ‘basic’ 
space of functions, Y?‘, for which the Dirichlet inte- 
gral defined in equation (4b) makes sense 

x”’ = {r&Y) I X,_V~D, 

(2,‘) < 03, ((V$) < co}. (5) 

We next introduce a ‘subspace’ of X”, SS, which 
includes only those functions from ;X’ which satisfy 
the essential boundary conditions on fJD, and aD, 

23 = {U(X,_JI)IVC Y' inD, 0 = i(0) onaD,(a 

(6) 

Note u E 2 need not satisfy the natural boundary con- 
ditions on aD,, as these conditions will be taken care 
of ‘automatically’ by the variational statement. We 
also assume here that all the boundaries aD are piece- 
wise smooth. 

Armed with the spaces described above, we can 
now present the variational statement associated with 
equation (1) : find that function O’(x,_r) in d which 
minimizes the value of the Dirichlet functional I 

z(e') = inf Z(V) 
I’EB 

(7) 

(for practical purposes ‘inf’ can be read as ‘min’). It 

can be shown that the differential, (l), and variational, 
(7), formulations of the heat conduction problem are 
closely related. Indeed, from equating to zero the first 
variation of the functional I(@‘), it follows that for 
sufficiently smooth data 

~(x,Y) = e’(x,y). (8) 

That is, the function 8’ in S?Z which minimizes the 

functional Zis the solution to the differential equation 
(I), 8. As regards the class of admissible P in equation 
(7), it is critical to note that the variational for- 
mulation (7) requires of its candidates only square 
integrability offirst derivatives (i.e. the function must 
be continuous, but its first derivative need not be) 
and satisfaction of essential boundary conditions. In 
contrast, the differential statement (I) makes sense 
only for functions for which we assume existence 
(square integrability) of the second derivative and 
satisfaction of both essential and natural boundary 
conditions. 

From equations (4), (7) and (8) we now obtain the 
following expression for the heat transfer rate : 

9 = o$ (F4’> (9) 

which will serve as the basis for the constructive 
bounds presented below. 

Lower and upper bounds 
From equation (9) it is now simple to see how lower 

and upper bounds can be constructed. If we define 

(10) 

for some space of functions F, it then follows that 

for 

(114 

S?“B c B c .G@LB. (llb) 

Enrichment of the space (.@ c g LB) leads to lower 
bounds (LB), while restriction of the space 
(S?ZUB c a) leads to upper bounds (UB). This result 
is, of course, as old as the variational formulation 
of the conduction problem. Of interest here are two 
‘spaces’ which have a simple physical interpretation 
and to which expressions (11) then add proof. 

In what follows, the functional spaces introduced 
will be defined in terms of ‘cuts’ inserted into the 
original domain, D. Although these cuts are important 
in that they define the continuity requirements on 
admissible functions, they do not actually affect the 
domain of integration in equation (IO), as they are 
of measure zero. We therefore do not distinguish 
between various forms of equation (10) defined on 
domains differing only by cuts, and keep the same 
symbol for the Dirichlet integral over all such regions. 

Lower bounds-insulators 
Consider the new problem in which we take the 

original problem defined in Fig. I, and insert anywhere 
in the domain a smooth insulator cut, as shown in 
Fig. 2. The problem in differential form is then 

vze=o inD’ 

Vf?.n = 0 onaD; 

8 = i(0) onaD;(aD;) 

VQ*n=O on aDj 

(12a) 

Wb) 

(12c) 

(124 

where D’ is identical to the original domain D save 
for a ‘cut’ corresponding to the insulator. 

The expression for q (even for modified problem 
(12)) is again given by the Dirichlet integral over the 
domain D’, as the additional boundary terms that 
would be generated in equation (3) all vanish due to 
the zero flux conditions (12d). In variational form, the 
heat transfer rate is thus given by 
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VB*n=O on aD;’ (15b) 

19 = l(0) on aD;‘(aD/) (15c) 

ve*t=o on aDi (15d.l) 

/k 

FIG. 2. Definition of lower bound problem corresponding to 
introduction of insulator cuts. 

(134 

where LB’ is the space of functions defined by 

B’ = {U 1 UE 3” in D’; v = l(0) on aD,(aD,)}. 

Wb) 

Although equations (13) and (9) may appear iden- 
tical, this is not the case due to the fact that D and D’ 
are not the same. In particular, a function in ?8 ’ may 
be discontinuous across aD, in D’, whereas a function 
in B may not be discontinuous across the cor- 
responding internal line in D. This implies that 

B c a’, and that therefore from expression (11) 

q’ < q. (14) 

The conclusion is thus that in all circumstances 
addition of (any number of) insulation cuts will lower 

the heat transfer rate through the body-as is expected 
on physical grounds. This general result was first 
stated and applied by Elrod [5], however, the dem- 
onstration of inequality (14) given in ref. [l] involves 
the introduction of artificial internal heat transfer 
coefficients, and is both significantly more com- 
plicated and less rigorous than the simple variational 
arguments given here. 

Although it is difficult to II priori estimate the mag- 
nitude of the underestimation for arbitrary cuts, it 
is simple to understand the origin of the error. In 
particular, it is clear that if the insulator cut is chosen 
so as to be coincident with a flux line of the exact 
solution (e.g. parallel to VQ), the insulator solution 

will be exact, q’ = q. It therefore follows that the closer 
the insulator cut approximates a flux line, the better 
(higher) the lower bound will be. 

Upper boundrs-superconductors 
Consider now another new problem in which we 

take the original problem of Fig. 1 and insert any- 
where in the domain a superconductor cut, as shown 
in Fig. 3. The problem in differential form is then 
given by 

V% = 0 in D” (15a) 

Wands = - 
s 

Wends (15d.2) 
aog_ 

where aDg+ and aDg_ are the two sides of the super- 

conductor cut, with normal and tangential vectors 
denoted n and t, respectively. It should be noted that 
although equations (15d) are ‘non-standard’ bound- 
ary conditions for Poisson’s equation (i.e. not Dirich- 
let, Neumann, or mixed), they can be shown to result 
in a well-posed elliptic problem [7]. Physically, super- 
conductor boundary conditions (15d) correspond to 
the fact that the temperature along a superconductor 
is constant but unknown (15d. l), with the inde- 

terminacy being fixed by condition (15d.2) which rep- 
resents an energy balance on an infinitesimal control 

volume surrounding the cut. 
The expression for the heat transfer rate, q, for the 

superconductor problem is the same as that given 
previously in equation (10). To show this, we start 
again with integration by parts 

eve.n&-((ve)‘) = 0 (16) 

where aDy refers to integration over both sides of the 
superconductor cut. As the surface integral over aD&’ 
vanishes due to the combination of equations (15d. 1) 
and (15d.2), the heat transfer rate in variational form 
can be written as 

8 = ,nfS ((Vu)‘> (17a) 

where B ’ is the space of functions defined by 

&?s={u~u~Z”inD”; 

v = l(0) on aD,(aD,), V0.t = 0 on do,}. (17b) 

Note equations (15d) are mixed essential/natural 

FIG. 3. Definition of upper bound problem corresponding 
to introduction of superconductor cuts. 
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2 

I-+l 
FIG. 4. Wedge geometry used to illustrate the one-dimen- 

sional estimation techniques for upper bounds. 

boundary conditions, in that equation (15d. 1) is 
essential whereas equation (15d.2) is natural. 

As expression (17a) is identical in form to that given 
in equation (IO), our general arguments as to lower 
and upper bounds given in expressions (11) apply. In 
particular, inspection of equation (17b) indicates that 
the two spaces g and gs are the same except for 
the restrictions they place on u along aDg ; in gs 
functions B must be continuous and constant, whereas 
in I functions t’ need only be continuous. Thus, @ 
is ‘richer’ than 6%’ (9” c &?), from which it then 
follows that 

q < (Is. (18) 

The addition of (any number of) superconductor 
cuts anywhere in the domain increases the heat trans- 
fer rate-as is expected on physical grounds [5]. As in 
the case of insulators where the error in estimation is 
‘proportional’ to the deviation in the insulator cut 
from ajlux line of the exact solution, so in the case of 
superconductors the error is related to the deviation 
in the superconductor cut from an isotherm of the 
exact solution. 

Our final result concerning insulators and super- 
conductors, corresponding to Elrod’s ‘Theorem II’ 
[5], can thus be written as 

d<q<qS (19) 

allowing for estimation of both upper and lower 
bounds for conduction heat transfer. 

Upper bounds. We briefly describe here some com- 
monly-used ane-dimensional estimates for heat trans- 
fer that can be interpreted in terms of the proofs given 
above. Consider the problem of conduction in the 
wedge shown in Fig. 4, governed by the differential 
and variational forms given in equations (1) and (9). 
respectively. If we make the assumption of one-dimen- 
sionahty, 8 = t?(x), and require that the heat transfer 
rate be the same at any cross-section (x = constant), 
we arrive at the usual equation for (approximate) one- 
dimensional heat transfer 

d/dx[A(x)dO(x)/dx] = 0, 0(O) = 1, 8(l) = 0 
t2Oa) 

where A(x) is the area of the wedge per unit depth, 
A(x) = 1 +x. From equation (ZOa) we can readily find 
the solution, 0 

0(x) = I’ l,&)d$/6’ l/A(S) de (20b) 

and corresponding heat transfer rate qlD (= -A(x) 
d@jdx) 

1’1 

I 
q ID =: 1 l/A(Odt. WC) 

0 

It is then straightfo~ard to show that the vari- 
ational statement associated with equation (20) is 
given by 

s 

I 
4 ID = inf (dGW2~(5) dt CW 

ceDlo 0 

where 8 ID is the space of one-dimensional functions 
u(x) that satisfy the essential boundary conditions, 
u(0) = 1, v(l) = 0. Using the fact that u = z,(x) only, 
equation (21a) can be rewritten as 

4 lD = inf ((VP))‘). WW 
S~.B’~ 

Now, since BID c a, it follows from the arguments 
of the previous section, expressions (10) and (1 1), that 
qtD is an upper bound for the actual heat transfer rate 

q =s qlD. (22) 

This reflects the fact that the one-dimensional assump- 
tion is equivalent to replacing all resistances in the y- 
direction with superconductors. Note the one-dimen- 
sional estimations are most useful (i.e. accurate) when 
the insulated boundaries have small slope, as in this 
situation the isotherms are, in fact, close to vertical 
lines. 

Lastly, we show how to obtain a ‘simplest’ upper 
bound to one-dimensional (and thus, from inequality 
(22), two-dimensional) conduction heat transfer. We 
consider the effect of area al~eraging, corresponding 
to reptacement of the original domain with a constant 
cross-section body possessing the same area and 
length as the original domain. This problem is trivial 
to solve, giving 

I 

1D.A _ 
4 - A(S) dt. (23) 

In order to show that qlDxA is larger than qlD, we make 
use of the following Schwarz inequality for a function 
f(x) > 0 

1= 
U 

0’f’12f-‘;2dxy 6 (l’fdx>(l’f-‘dx). 

(244 
Identifying f(x) as A(x), we find that 
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FIG. 5. Geometry used to illustrate the one-dimensional 
estimation techniques for lower bounds. 

which gives the following inequality : 

q < q’D < q1D.A. (25) 

The effect of area averaging is to provide an upper 

bound that is greater yet than the one-dimensional 
approximation. Intuitively, q’D.A > qlD due to the fact 
that the decrease in resistance at the small-area bottle- 
necks is proportionately greater than the increase in 
resistance in the large-area regions of the wedge. If we 
evaluate our estimates in inequality (25) for the wedge 
shown in Fig. 4, we find that q’D.A = 312 = 1.50 and 

lD = l/in 2 = 1.44. The ‘exact’, two-dimensional 
folution is found (numerically) to be q = 1.38 [8]. 

Lower bounds. By analogy with the previous section, 

we demonstrate here the use of one-dimensional esti- 
mates to arrive at lower bounds for heat transfer. 
Consider the two-dimensional conduction problem 
given in Fig. 5, governed by the differential and vari- 
ational forms given in equations (1) and (9), respec- 
tively. Ifwe now neglect the heat flux in they-direction 
at any point inside D, we arrive at another form of 
one-dimensional equation in x, where y now appears 

as a parameter 

d20 
dx2 = 0, f3Lo = 1, OlrzBcy, = 0 Wa) 

with the solution 0(x) and heat transfer qld obtained 

as 

e = 1 -x/B(y) (26b) 

(26~) 

The variational formulation associated with equa- 
tions (26) can be written as 

where BLd is the space of functions of two variables 
v(x, y) which are continuous and differentiable with 
respect to the x variable, satisfy boundary conditions 
from equations (26a), but might be discontinuous in 

the y-direction. The equivalence of equation (27) to 
equations (26) can be shown using standard vari- 
ational techniques. 

In order to arrive at the required lower bounds we 

define D,J.Y, 4’) as the exact solution of the two-dimen- 
sional problem (1). Then, recognizing that 0,(x, y) 
E Bid and using equation (27) we obtain 

< 
i’s”‘?’ 

[&,/ax) + @a,,/+)‘] dx dy = q. (28) 
0 0 

The lower bound reflects the fact that this form of 
one-dimensional estimate is equivalent to replacing all 
resistances in the x-direction with insulators. 

Now again, as in the previous section, we consider 
the effect of area averaging in order to provide a 
‘simplest’ lower bound for qld and thus for q. We 
replace now the original domain given on Fig. 5 by 
the region with constant length 

possessing the same area and height as the original 
domain. The heat conduction problem in the ‘aver- 
aged’ domain is trivially solved 

dd.B = 1 is B(5) d5. (294 
0 

Identifying f(x) from equation (24a) with B(y) and 
using equation (26~) we arrive at 

(29b) 

Intuitively, we can understand inequality (29b) by 
noting that the thermal resistance is directly pro- 
portional to B(y), and that the increases in B(y) 
(resistance) for B(y) < B are proportionately greater 
than the decreases in B(y) (resistance) for B(y) > B, 
thus giving q’d.B < qld. As an example we choose the 

geometry of Fig. 5, B(y) = l-]y-0.51, 0 <y < 1. 
for which we obtain q’d.B = 4/3 = 1.333 < qld = 
2ln2 = 1.386 < q = 1.565 [8]. 

Use of one-dimensional estimates of the kind 
described here is quite widespread. However, it is gen- 
erally not stated whether such estimates constitute 
lower or upper bounds, or what the hierarchy is in 
terms of degree of approximation. The simple proofs 
given here should help in this regard. 

Extension to convective boundary conditions 
We have considered so far the case with two iso- 

thermal boundaries aD, and aD,. However, our 
results readily extend to the case where these bound- 
aries are exposed to the ambient temperatures (T, and 
r,,, respectively) through a convective heat transfer 
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coefficient, h(x) > 0. Our problem statement (1) then 

becomes 

v’e = 0 in D Wa) 

ve.n = 0 on i3D2 Wb) 

V0.n = -h’(e- 1) on CID, 

W-n = -h’e on aD, (3Oc) 

where h’ is a non-dimensional heat transfer coefficient 

(i.e. Biot number). 
Following a procedure analogous to that used to 

arrive at equation (9), it can be shown that the non- 
dimensional heat transfer rate associated with equa- 
tions (30) is given by 

q = inf f(u) 
1’E.?@ 

(31a) 

where 7is the ‘modified’ Dirichlet functional 

I”(u) = ((VZl)‘) + 
s 

h’(s)(z)-1)‘ds + 
s 

h’(s)t12 ds 
SD, eoll 

(31b) 

and & = Z’, as all boundary conditions in equa- 
tions (30) are natural. The fact that we can once again 
express the heat transfer rate as the minimum of a 
functional implies that the (variational) results for the 
constant temperature case directly extend to the case 
of convective boundary conditions treated in ref. [S]. 

PART 2. AN UPPER BOUND FOR FORCED 

CONVECTION HEAT TRANSFER IN 

‘TURBULENT’ PLANE COUElTE FLOW 

We are concerned here with an upper bound for 
heat transport by forced convection in ‘turbulent’ 
plane Couette flow. Closely related problems have 
been considered previously by Howard [2, 91 and 
Busse [lo, 1 I]. In particular, Howard obtained an 
upper bound for heat transport by natural convection 
between two infinite horizontal plates for a given Ray- 
leigh number [9], and for the dissipation function for 
plane Couette flow for a given Reynolds number [2]. 
Busse [lo, 111 subsequently improved on some of 
Howard’s results using the technique of multiple 
boundary layers. 

As is well known, the variational principle for con- 
duction heat transfer utilized in Part 1 of this paper is 
no longer relevant for the convection problem, and 
thus another method must be used to obtain the 
required estimations of heat transfer. Howard’s 
approach entails the construction of exact integral 
expressions (‘power constraints’) related to global 
properties of the flow. One then looks for a supremum 
of the quantities of interest (e.g. heat transport) sub- 
ject to these energy integral constraints, the boundary 
conditions of the problem, and perhaps incom- 
pressibility. Integral inequalities serve as first esti- 
mates for upper bounds, however, more refined results 

“0 
TO 

- I///~~~~~““” j,,,,,,[ 
L 

IL Y pa 
x,i 2d 

1 4 ,/ -3 
7”“T”““‘T”” To+ 2AT 

FIG. 6. Geometry definition for forced convection in plane 
Couette flow between infinite parallel plates. 

can be obtained by direct investigation of the appro- 
priate Euler equations. 

This paper can be considered as an extension of 

Howard’s ideas to the case of forced convection. In 
particular, heat transport in the plane Couette 
geometry is estimated in terms of the Peclet number 
and the (given) viscous dissipation (e.g. momentum 
transport) of the flow. It is clear that the momentum 
equations are independent of the heat equation for 
the forced convection case, and thus the momentum 
transport can be either independently estimated, or 
taken from experimental data. We use here only 
simple integral inequalities (almost entirely taken 
from Howard’s papers), with no attempt made to 
obtain the extremizing fields. It is therefore clear 

that the result presented is not optimal, and can be im- 
proved to provide closer agreement with experiment. 

The results obtained in this part of the paper can 

also be related to Reynolds’ conjecture [12] con- 
cerning the similarity between momentum and heat 
transfer, now known as the Reynolds analogy [6]. The 
simplicity and practical ramifications of this idea are 
extremely intriguing, however, to date, it has been 
rigorously demonstrated only for the flat plate lami- 
nar boundary layer. We show here that the heat flux 

is, indeed, bounded by the momentum flux for a non- 
trivial class of flows, an indication that the Reynolds 
analogy can perhaps be systematically extended to 
more complicated situations. 

Problem statement 
We consider incompressible flow and heat transport 

between two infinite isothermal rigid plates separated 
by a distance 2d, as shown in Fig. 6. The plates are 
moving in opposite directions with velocities T V,, 
with the top plate at temperature T = T,, and the 
bottom plate at temperature T = T,+2AT. Using d 
for the length scaling, d/V, for time, V, for velocity, 
PI’; for pressure, and AT for temperature, the non- 
dimensional equations for forced convection are given 

by 

avjat+v.vv = -VP+l/ReV’V; 

V*V=O; V= Tionz= +l (32a) 

aojat+v.vo = l/PeV%; 0 = Tl onz= +l 

(32b) 

where Re = V,d/v is the Reynolds number, Pe = 
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Re Pr the Peclet number. Pr = V/E the Prandtl number, 
and 0 = [(T- T,)/Aq - 1 the non-dimensional tem- 
perature. Here v is the kinematic viscosity and CL the 
thermal diffusivity of the fluid. It should be noted that 
we have neglected the (forcing) viscous dissipation 
term in thermal energy equation (32b), due to its 
minimal influence on the temperature field for the 
parameter range of interest here. However. the viscous 
dissipation (i.e. wall shear stress) will nevertheless 
play a critical role in determining the heat transfer, in 
that by specifying a fixed dissipation we impose a 

constraint on the possible velocity fields that enter into 

the V * VO convective term of the energy equation. 
Following Howard [2, 91, we assume that for any 

function V, P. 0 averages over the entire domain 
(defined here as ( * )) exist, and are independent of 
time. Using this assumption. the energy integral of 
equation (32b) (multiplication by 0 followed by aver- 
aging over the domain) results in effectively the same 
expression for wall heat transfer as for the conduction 
problem studied in Part I. However, although the 
heat transfer rate for the conduction and convection 

problems has formally the same expression in terms 
of the Dirichlet integral, 8 = kAT((VO)‘)/d (here 0 
is the average heat flux at the wall), the variational 
principle utilized in Part 1 is no longer relevant, as the 
convection heat transfer problem has no ‘extremum’ 
properties. Some new approach must therefore be 
found in searching for estimations of 0. 

In order to define this approach we utilize the tech- 
nique of space averaging. We assume that for any 
function V, P. 0 horizontal averages (over planes 
z’= constant) exist, and are independent of time (see 
the Appendix). All quantities are then split into ‘mean’ 
and ‘fluctuating’ parts. The horizontal averages will 
be denoted by an overbar, and represent the mean 
values of the given quantities 

V = u,(z)i+v; P =po(z)+p; 0 = B,(z)+0 (33a) 

V=Y=8=0. (33b) 

Averaging the momentum and temperature equations 
we obtain the following expressions for the mean 
fields : 

u&) = -z+Re uwd[-(l+s)(uw) (34a) 
1 

e,(z) = --z+Pe 
v ~ 

eM’di- (1 +z)(ewj (34b) 
-1 1 

where averaging over the entire domain can be defined 
in terms of horizontal averages as 

’ (J’) = l/2 
s 

fdz. 
-I 

Now defining P as the mean momentum flux (i.e. 
shear stress) and Q as the mean heat flux, we obtain 

from equations (34) 

f = F/(/.iV,,/d) = -duO/dz];=,, = l+Re(uw) 

(35a) 

4 = Q/(kAT/d) = -dBO/dz],=+, = l+Pe(&) 

(35b) 

where p is the viscosity and k the thermal conductivity 
of the fluid. The parameter f defined in equation 
(35a) represents both the momentum flux (wall shear 
stress) and the viscous dissipation, while q represents 
the heat flux (or Nusselt number). 

Multiplying the perturbation momentum equation 
by v and the perturbation heat equation by 0 and 
integrating over the domain, the two ‘energy’ integrals 
are obtained 

(uw) = 1/Re((Vv)2)+Re((UMl-(~~))2) (36a) 

(0w) = l/Pe((V0)2)+Pe((t?w-(~wj)2) (36b) 

where we have used homogeneity and the mean-field 
expressions given by equations (34). Equations (34)- 
(36) appear exactly as in the earlier work by Howard 

[2, 91. 
In this paper we are looking for relatively simple 

estimations for heat transfer. For the conduction 
problem described in Part 1 we could utilize a vari- 
ational principle to reduce the problem to tractable 
form. Unfortunately, for turbulent convection no 
variational statement is known to exist. However, we 
can maintain the integral nature of the analysis of Part 
1 by using power integrals (36) to construct ‘artificial’ 
functionals that can then be used to boundq (although 
the actual q will not correspond to this extremum). 

We are therefore searching here for an upper bound 
for q, the heat flux, in terms of the Reynolds and 
Prandtl numbers for a given value of momentum flux, 
f. The problem can be stated as follows. 

Find an upper bound for q- 1 = Pe (ew) when 
the functions 8, v satisfy the following constraints: 
Q = v = 0 on the boundaries ; the power integrals 
given by equations (36) ; f - 1 = Re (uw) ; V *v = 0. 
Here f can be considered as given. 

The form of equations (34a) and (34b), (35a) and 
(35b), and (36a) and (36b) suggests a strong similarity 
in the heat and momentum transport mechanisms. 
Thus we expect that the heat flux can be bounded in 
terms of the momentum flux, which corresponds to a 
(somewhat weak) statement of the classical Reynolds 
analogy. 

An upper boundfor heat transport 

In this section, we obtain an upper bound for (tur- 
bulent) heat transport. First, it is well known that if 
the value of the Reynolds number is sufficiently small, 
the unique stationary solution of equations (32) cor- 
responds to linear plane Couette flow (f = l), with 
purely conducting heat transfer (q = 1, a lower bound 
for convection heat transfer for any value of the Rey- 
nolds number). However, with an increase of the 
Reynolds number, the linear velocity profile becomes 



Bounds for conduction and forced convection heat transfer 1755 

unstable, and as from equations (36) we see that both 
(uw) and (0~) are positive, f and q must be greater 
than unity for any new kind of stationary flow. 

To determine how large (Bw) (and hence, q) can 
be, we use equation (36b) to rewrite equation (35b) 
as a homogeneous functional 

q_, = 1 - lIf+<(W2)I(Q~‘) 
(( 1 - Qd(Qw>)‘> 

(37) 

and search for a bound of this quantity. We see that 
the functional is homogeneous, and thus an increase 
in the ‘amplitudes’ of the functions (0, u.) does not 
endanger the possibility of an upper bound for q. 

Functional (37) cannot be bounded from above only 
if the denominator can become arbitrarily small. 
From the Schwarz inequality ((f)’ ,< (f’)), and the 
boundary conditions of the flow, we easily obtain that 
the denominator equals zero only for the trivial case 
Qw = 0 (i.e. q = 1). However, if 0~~ is a constant 
almost everywhere and goes to zero only near the 
walls (which is consistent with the ‘real’ boundary 
layer structure), the value of the denominator will 
become quite small. It remains to be shown that the 
denominator can in fact be bounded from below so 
that q is bounded from above. In essence, this 

addresses the question of whether by fixing the dis- 
sipation we sufficiently restrict the range of excited 
scales that enter into the thermal transport process. 

Slightly reformulating Howard’s estimations for 
terms similar to that appearing in the denominator of 
equation (37), we obtain 

(38) 

A complete derivation of this inequality is given in the 
Appendix. Now, using equations (37) and (38) we 
obtain 

q-l < 6(1 -.)c/Pe)J_x $V!$ “’ 
[ 1 (39) 

where x = ((V0)‘)/(0~). For any X, (1 -.u/Pe)Jx 

< 2(Pe/27)“‘, and thus 

16Pe2 ((Vv)‘) Re(uw) “* 
q-l< ~ 

3 Re(uw) Pe (0w) 1 
. (40) 

From equation (36a) we have that ((VV)~) < 
Re (uw), and thus, using equations (35), we obtain 

12. 0. Reynolds, On the extent and action of the heating 
surface for steam boilers, Proc. Manchr Lit. Phil. Sot. 
14, 7-12 (1874). 

or 

q- 1 G 4Pe JCf - I)/ J@(q- 1)) (414 
13. A. A. Sonin, Private communication (1986). 
14. S. Chandrasekhar, Hydrodynamic and Hydromagnefic 

Stability. Oxford University Press, Oxford (1961). 

q- 1 < (16/3)‘j3 Pe2j3 (f- 1)‘13 (41b) 

which is the required bound for q in terms of Pe and f. APPENDIX 

The value of f represents the non-dimensional 
momentum flux through the boundaries, and thus the 
bound given in equations (41) can be considered as 
theoretical support to Reynolds’ proposed analogy 
between heat and momentum transfer. Although 
there is not, to our knowledge, any experimental data 

A complete derivation of inequality (38) is presented here. 
Although these derivations are almost entirely taken from 
the work of Howard [2, 91, we believe that it is worthwhile 
to summarize them here because of their importance in 
understanding our final result. 

First, we give the formal definition of horizontal aver- 
aging. Define in the horizontal plane X, y a region B with area 

for heat transport in turbulent Couette flow, com- 
parison of equation (41b) with heuristic models [13] 
indicates that equation (41 b) probably overestimates 
the heat transfer by several orders of magnitude. Fur- 
thermore, the functional dependence of q on f is not 
that expected from Reynolds’ analogy. These dis- 
crepancies may be due to the integral estimates 
inherent in equation (41b) (i.e. equations (38)-(40)), 
or the fact that the low-order moments given in equa- 
tion (36b) do not sufficiently restrict the class of 
admissible functions. The merit of bound (41b) is 
clearly not in its predictive value, but rather in the 
support it lends to the concept that the mechanisms 
of momentum and heat transport in turbulent flow 
are intimately linked. 
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Expanding the gradient to include all the velocity com- 
ponents, we find that 

(e.g. if B is defined by 1x1 < LI. I_vI < h. then A = 4ab). For a 
l&r < 2(1 -z)[((ve)2)((Vv)2)]“2. (A6) 

given function F(x,y, Z) we consider the following limit : From equation (36b) we see that (@w) is positive, and 

r. * 7 thus we can rewrite the last inequality as 

F(x-. y, 2) dB . (Al) B 
where 

jew1 < (1 -z)<ew)/s (A7) 

By definition, if the limit on the right-hand side exists and 
does not depend on the way B goes to infinity, then this limit 
(depending on ; only) represents the horizontal average of 26 = 

(eMl)Z 

1 

I : Z 1 2 

((ve)2)((vv)~) 
< JRa 2: J (A8) 

the function F(.Y, y, z). 
Consider now a function .f‘(:) continuous on the interval 

This last inequality is borrowed from the Benard problem 

(- 1,l) with piecewise continuous derivative f,. Then, if 
[14], where it is proven that equation (A8) holds for any 0 

f‘(*l)=Oandif 
and v satisfying 0 = v = 0 on the boundaries and V *v = 0. 
For the case of natural convection Ra has the meaning of the 

s ’ r‘,‘d-_ 
-1. 

exists, then 

f’(Z) < 2(1 -Z)(,/:) 

and also 

.f’(Z) d 2(l +Z)(fl’>. 

To show this, we use the Schwarz inequality 

critical Rayleigh number, but in our case offorcedconvection 
this value can be considered as simply the minimum eigen- 
value of an appropriately-defined eigenproblem. For the fol- 
lowing derivation it is only important that 6 be less than 
unity. 

We can thus obtain 

lewl d (1 +.Z)(ew>/s; l&l < (1 -Z)(eMi>/s 

l-leM~~/(ew>b I-(lfZ)/S, I-lel;~/@w)> l-(1-2)/6 

good for z close to - 1 ’ good for z close to 1 

.fW = [I-,/.(odi]’ 

(A9) 

For the intervals (- 1, -1+6) and (I-6, 1) we see that 
both sides of inequalities (A9) are positive, and thus 2 d 

s s- 
di [I -l8wlj@w)]2 2 -I _, u/-i’(i) di d *Cl +=Kft> 

[ I, 1 - T 

forzE(-1, -1+6) ’ 
[l- lewl/(tk)]’ 2 

1-Z 2 [ 1 1 - ___ 
6 

forcE(l-d,l) (AlO) 

Now, for any function u(.x,~.,z) which satisfies the con- 
On the basis of this result we then readily derive (recall 6 < 1) 

dition u(.Y,~, _t 1) = 0. we obtain 

s S’ 

2 yj (I- leMllj(eMlp dr 

< 2( I -;) lim 1 
s 

~ 

1 

I 

sa7.A 82 -, 
[u(x,~,,c)J’drdB 1 

s 

-I+& 

3 -, 
(1 - leqj(ew))* dc 

=2(1 -z)((u,,“> < 2(1 -:)((VU)~). (A3) I PI 
We can obtain a similar result integrating from the other 
wall, giving 

+ ; 1 (1 -lGl/(ew>)“dz 
J 

ziZ < 2(1 +Z)((vz4)2) 

good for 2 close to - I ’ 
Liz d 2U -z)((Vu)‘) (A4) 

good for z close to 1 . 
~~~~~~“(l-~~.;tj~,(l-n;id~_:, 

Then, for 0 and M: representing the quantities defined in Part (All) 

2 of this paper, we use the Schwarz inequality and the above Substituting expressions (A8) in expressions (All) we 

results to obtain eventually obtain 

-’ 1 ’ ‘j HwdBi’ < [li_m,;jji+ldB]’ 
((1 -Gi<ewj)2> 2 I/6(ew)/[((vo)2)((vv)‘)1”* 

ied = ;+TJ z B 6412) 
which is inequality (38) appearing in Part 2 of this paper. It 

< [~~~~ii~dB][~~~1~~~dB] 
should be noted that for a turbulent flow we expect the 
estimate (A12) of (( 1 - &&/( 0w))’ ) to be relatively sharp. 
as the neglected portion of the integral in expression (Al 1) 

= t7’ \LV2 $ 4(l--1)2((ve)?)((vw)‘). (A5) corresponds to the well-mixed ‘core’ in which % = (Bw). 
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LIMITES ENTRE LA CONDUCTION THERMIQUE ET LA CONVECTION FORCEE 

R&urn&On considere les front&x de transfert de chaleur dans quelques problemes classiques de con- 
duction et de convection for&e de la chaleur. Les iimites de conduction sont basees sur une formulation 
variationnelle dans laquelle un enrichis~ment ou une restriction de l’espace des fonctions g minimi~r 
conduit a une frontiere inferieure ou superieure. On montre que l-addition de “coupes” isolantes c&e un 
elargissement de l’espace et par suite d’une sous-estimation du transport, tandis que l’addition de coupes 
supraconductrices conduit a une contraction de l’espace et a une surestimation. Ces resultats constituent 
une preuve formclle de quelques theortmes proposes par Elrod (Trans. ASME J. Heat Transfer 65-70 
(1974)). On presente aussi une limite suptrieure de la convection for&e dans l’ecoulement turbulent de 
Couette a partir de la methode des moyennes horizontales et des integrales puissance. En particulier, on 
montre que pour un transfert de quantite de mouvement donn6. le flux the~ique a la paroi peut hre limit6 
en dessous par une fonction des nombres de Reynolds et de Prandtl. Cette relation entre la tension de 
frottement et le flux de chaleur sert de support theorique a l’analogie de Reynolds entre les transports de 

quantite de mouvement et de chaleur pour les ecoulements turbulents sans separation. 

GRENZEN FUR DEN W~RMETRANSPORT DURCH LEITUNG UND ERZWUNGENE 
KONVEKTION 

Zusammenfassung-Es werden Grenzen fur den Wlrmetransport bei verschiedenen klassischen Problemen 
der Wlrmeleitung und der erzwungenen Konvektion entwickelt. Die Grenzen der Wiirmeleitung beruhen 
auf einem Variations-Verfahren. bei welchem eine systematische Erweiterung und Einschrankung des 
Raumes der ~inimierungsfunktionen zu unteren und oberen Grenzen fiihrt. Es wird gezeigt, da8 das 
Hinzufiigen einer Isolator-Scheme zu einer Erweiterung des Raumes fiihrt, wodurch der Transport als zu 
klein bare&met wird. Gerade umgekehrt ist die Wirkung beim Hinzufiigen eines Supraleiters. Unsere Ergeb- 
nisse begriinden einen formalen Beweis der verschiedenen Theoreme, die von Elrod vorgestellt worden 
sind. Eine obere Grenze fur den WPrmetransport durch erzwungene Konvektion in einer turbulenten 
ebenen Couette-Striimung wird vorgestellt. Im einzelnen wird gezeigt, daI3 fur einen festen vorgegebenen 
Imp&transport der W&netransport von der Platte als eine Funktion der Reynolds- und Prandtl- 
Zahfen nach oben abgegrenzt werden kann. Diese Bc~ehung zwischen der ~hubspannung und der 
W~rmestromdichte dient als theoretische Unterstiitzung der Reynolds-Analogie fiir turbulente, nicht 

abgelijste Striimung. 

~AH~~bI MEXGJY KOH~YKT~BHbIM M BbIH~~EHHOKOHBEKT~BHbIM 
~H~~~MEHOM 

ArmoTaunw-Gnpe~eneHb~ rpaeuubr cansefi nepeHoca Tenna B pa3nwiHbtx KnaccawcKnx 3anaqax Kow 

AyKTHBHOrO A BbIHy~~eHHOKOHBeKTHBHOrOTennOO6MeHa.~~ TeMO~pOBOAHOCTHCBR3H OCHOBaHbJ Ha 

eaptiaueoHHolh nocTarioBKe,r~ec~creMaTsrecKoe pacwipetise H 0rpawietiuenpocrpaHcTsa BenwniH, 

,Te~XOA%lQHX ,, MHHHMB3BpYlOlUHe @,‘HKl,HFf, IIpSSBOAHT K HHXOiSiM W BepXHHM CBII31IM, COOTBeTCT- 

BeHHO. ~OKa3aH0, YTO AO6aBnefIHe ~e~~BOAff~X ‘OTpe3KOB’ AaeT PaC~~~H~e ZIpOCTpaIiCTBa H, COOT- 

BeT‘ZTBeHHO, 3aHmeHHbieAaHHMenOnepeHoey,BTOBPeMK KBK Ao6aBneH~eC~pXnpOBOn~~XOT~3KOB 

RpHBOART K CXCEtTHKI IIpOCTpiUiCTBa B 3aBbIliIeHHbIM p3ynbTaTaM. Haura AaHHbIe @OpMaJibiiO BMTe- 

KamT 83 necKonbKiix TeopeM 3nbpoAa (Trans. ASME J. Heat Transfer 65-70 (February 1974)). Hony- 
YeHa BepXHKSl CBR3b AJM BbIHYXAeHHOKOHBeKTHBHOrO TeWlOtIepeHOCa B Tj’p6yAeHTHOM IUOCKOM 

TeYeHHEi Ky3TTii, OCHOBaHHOM Ha MeTOAe rOp830HTtUbHbIX YCpeAHeHHii if HHTerpWlOB 3HeplliU. B ‘iacT- 
HOCTH, noKa3aHo. YTO nns 3aaasHoro nepeHoca HMnynbca RHTeHCHBHOCTB TennonepeHoca OT CTeHKU 

MOXST 6bITb Oi-PaHEqeHa CBepXy KaX &-‘HWS ‘fBCeJl PeiiHOnbA@ H npZSiATJIS. 3TO COOTHO~eHHe 

M=A~ KacaTenbrihlM HanprrxcewieM ii Tenno5whf n0T0K0~ cnyz+siT T~O~~TU~~~CKSM ne~TBep~AeHmeM 

~eiiHOnbACOBCKOii~H~O~~~~~HOC~~M~~nbC~/Te~n~AnXT~p6~AeHTHO~OHeOTO~B~B~e~OCR~OTOK~. 


